- Метод случайных функций
-
1. Метод случайных функций
1.1. Определение показателей точности ТС технологических операций методом случайных функций производится расчетом характеристик случайного процесса изменения контролируемого параметра x(t): математического ожидания m{x(t)} и дисперсии D{x(t)}.
1.2. Исходные данные для определения величин m{x{t)} и D{x(t)} получают в ходе выборочного обследования не менее десяти реализации технологического процесса.
1.2.1. Полученные в результате обследования значения контролируемых параметров деталей заносят в таблицу (см. табл. 1), в которой через t1, t2, ..., tk, ..., t1 ..., tm обозначают номера последовательно обрабатываемых деталей одной партии (или моменты времени проведения измерений), а через x1(t), x2(t), xn(t) обозначают отдельные реализации технологического процесса (партии или выборки из партии).
Таблица 1
x(t)
t
t1
t2
…
tk
…
t1
...
(tm)
x1(t)
x1(t1)
x1(t2)
…
x1(tk)
…
x1(t1)
…
x1(tm)
x2(t)
x2(t1)
x2(t2)
…
x2(tk)
…
x2(t1)
…
x2(tm)
…
…
…
…
…
…
…
…
…
xj(t)
xj(t1)
xj(t2)
…
xj(tk)
…
xj(t1)
…
xj(tm)
…
…
…
…
xn(t)
xn(t1)
xn(t2)
…
xn(tk)
…
xn(t1)
…
xn(tm)
1.2.2. Значения t1, t2, .., tm следует задавать равноотстоящими (t2-t1=t3-t2=tm-tm-1).
1.2.3. В зависимости от объема партий разность следует брать таким образом, чтобы количество измеряемых деталей m в одной партии или реализации было не менее, десяти.
1.2.4. Оценки математических ожиданий
{x(tk)} и дисперсий
{x(tk)} вычисляют по формулам:
; (1)
; (2)
или
, (3)
где xj(tk) - значение j-й реализации в момент tk;
n - количество реализации.
1.2.5. Вычисленные по формулам (1), (2), (3) значения
{x{tk)},
{x{tk)} следует выравнивать по формулам, приведенным в табл. 2.
1.2.6. Если мгновенное поле рассеяния контролируемого параметра постоянно в процессе обработки партии деталей, а уровень настройки постоянный или смещается по линейной зависимости, каждую реализацию следует представлять линейной функцией вида
(tk)=uj·tk+x0j, (4)
где tk=t1; t2; …, tm- момент окончания обработки k-й детали;
(tk) - значение уровня настройки в tk-й момент времени;
x0j - случайная величина погрешности настройки j-й реализации;
uj - случайная величина скорости смещения уровня настройки, численно равная тангенсу угла наклона прямой.
1.2.7. Для. любого tk по всем реализациям находят оценки: среднего квадратического отклонения случайной погрешности
, (5)
где Sm- оценка среднего квадратического отклонения математического ожидания погрешности настройки
(х0), характеризующего фактический уровень настройки
; (6)
Таблица 2
Функция
Формулы для определения постоянных по способу наименьших квадратов
График функций
y=ax+b
y=ax2+bx+c
y=abx
или
lgy=lga+xlgb
y=axb
или
lgy=lga+blgx
дисперсии погрешности настройки
; (7)
математического ожидания
(u) скорости смещения уровня настройки
; (8)
дисперсии скорости смещения уровня настройки
. (9)
1.3. Коэффициент точности ТС технологической операции вычисляют по формуле, приведенной в п. 2.6.1 настоящего стандарта. При этом w определяют по следующим формулам:
при смещении уровня настройки к верхнему предельному отклонению контролируемого параметра
; (10)
при смещении уровня настройки к нижнему предельному отклонению контролируемого параметра
. (11)
1.4. Коэффициент точности ТС технологической операции для случаев, когда каждую реализацию представляют линейной функцией, вычисляют по формуле, приведенной в п. 2.6.1 настоящего стандарта. При этом w (для любых случаев смещения уровня настройки) определяют по формуле
. (12)
1.5. Для обеспечения надежности ТС технологической операции по точности при определении функции
{x(t)} и
{x(t)} по п. 1.2.4, необходимо, чтобы в моменты tk выполнялись следующие неравенства:
при смещении уровня настройки к верхней границе поля допуска
, (13)
где хв, хн - соответственно, верхнее и нижнее предельные значения контролируемого параметра;
- среднее квадратическое отклонение контролируемого параметра, вычисленное для момента времени tk по всем реализациям;
при смещении уровня настройки к нижней границе поля допуска
. (14)
1.6. Для обеспечения надежности ТС технологической операции по точности при определении функций
{x(t)} и
{x(t)} по пп. 1.2.6 и 1.2.7 необходимо, чтобы в моменты tк, выполнялись следующие неравенства:
при смещении уровня настройки к верхней границе поля допуска
; (15)
при смещении уровня настройки к нижней границе поля допуска
. (16)
1.7. В случае единичного и мелкосерийного производства для обеспечения надежности ТС технологической операции по точности в выражения (13), (14), (15), (16) в качестве исходных данных {xj(tk), j=1...n; k=1...m} следует подставлять значения приведенных отклонений, определяемые по справочному приложению 5.
1.8. Пример. Определить коэффициент точности ТС токарной операции по данным выборочного обследования десяти реализации, указанным в табл. 3, и для допуска Т=30 мкм.
1.8.1. Определяем значения
{х(tk)} и
{х(tk)} по формулам (1) и (3) и среднее квадратическое отклонение из выражения
для каждого момента времени tk (R=1... 10).
Результаты вычислений
{х(tk)} и
{х(tk)} даны в табл. 3.
Таблица 3
x(t)
t
1
2
3
4
5
6
7
8
9
10
x1(t)
18
18
16
14
10
7
4
2
2
2
x2(t)
18
14
16
10
10
6
7
2
3
2
x3(t)
15
10
10
6
7
3
4
2
3
1
x4(t)
20
15
13
8
9
5
5
2
3
2
x5(t)
16
10
9
6
7
1
3
1
3
2
x6(t)
16
14
9
8
4
4
2
3
2
5
x7(t)
14
13
9
8
4
4
1
2
1
8
x8(t)
11
11
6
6
2
3
1
1
5
6
x9(t)
17
13
10
11
6
7
4
6
5
9
x10(t)
18
18
13
13
9
9
7
9
8
11
{х(tk)}
16,3
16,6
11,1
9,0
6,8
4,9
3,8
3,0
3,5
4,8
{х(tk)}
2,53
2,87
3,28
2,88
2,77
2,72
2,14
2,54
2,02
3,54
1.8.2. Рассчитываем коэффициент точности по п. 1.6.
2.6. Пример. Определить коэффициент точности ТС операции обработки корпусной заготовки, закрепленной в приспособлении на столе вертикально-фрезерного станка, торцевой фрезой, установленной в шпинделе (при помощи оправки).
2.6.1. Исходные данные. В соответствии со схемой фрезерования суммарная погрешность контролируемого параметра включает следующие элементарные погрешности:
геометрическую погрешность станка D1=30 мкм;
погрешность базирования D2=0 (вследствие совпадения измерительной и установочной базы);
погрешность закрепления D3=20 мкм;
погрешность изготовления приспособления D4==20 мкм;
погрешность изготовления инструмента D5=0 (предполагаем, что настройку на размер ведут по наиболее выступающему зубу фрезы, а, следовательно, биение зубьев не влияет на контролируемый параметр);
погрешность настройки фрезы на размер D6=40 мкм;
погрешность, связанная с размерным износом инструмента D7=0 (считаем, что ее можно компенсировать поднастройкой фрезы);
погрешность измерений D8=90 мкм;
погрешность, вызванная отжатием фрезы от заготовки под действием сил резания D9=30 мкм.
Допуск на контролируемый параметр Т равен 200 мкм.
2.62. Определяем величину суммарной погрешности контролируемого параметра dS.
При этом значения коэффициентов l1,…, l9 принимаем равными 0,111, полагая, что условия обработки заготовки таковы, что распределение элементарных погрешностей будет близким к закону Гаусса.
Принимаем риск Р=1% и по табл. 4 находим значение К=2,57.
Определяем искомую величину dS по формуле (17)
мкм.
2.6.3. Определяем коэффициент точности по п. 2.5:
3.8. Пример. Произвести контроль точности ТС технологической операции методом приведенных отклонений.
3.8.1. Исходные данные. В результате измерения размеров отверстий диаметром 450Н9 и диаметром 350Н9 получены следующие восемь значений:
x1 = 460,03 мм;
х2 = 460,06 мм;
х3 = 460,09 мм;
х4 = 460,12 мм;
y1 = 350,02 мм;
y2 = 350,05 мм;
y3 = 350,06 мм;
y4 = 350,10 мм.
На черт. 4 показано расположение отклонений измеренных размеров в пределах своих полей допусков.
3.8.2. Определяем приведенные отклонения по формуле (1):
для отверстия диаметром 460Н9:
;
;
Черт. 4
;
;
для отверстия диаметром 350Н9:
;
;
;
3.8.3. Поскольку рассчитанные приведенные отклонения удовлетворяют условию (5), то, в соответствии с п. 3.7, точность ТС следует считать удовлетворительной.
4. Пример. Для операции резания на автомате продольного точения погрешность обработки детали по диаметру
задана в виде суммы нормально распределенной погрешности настройки с параметрами m=10 мм, s=0,002 мм и смещения центра группирования по линейному закону со скоростью u=0,002 мм/ч.
Определить вероятность выполнения задания P(t) по указанному диаметру для момента времени t=3 ч.
4.1. По условию задачи плотность распределения погрешности обработки имеет вид
.
4.2. Подставляем искомую вероятность согласно выражению (1) в виде
,
где
- функция нормального распределения.
4.3. Подставляем в последнее выражение верхнее предельное значение хв=10,01 мм, нижнее предельное значение хн=9,955 мм и параметры m, s и u из условия задачи:
.
7. Пример. В процессе выборочного приемочного контроля одна из трех партий деталей, прошедших термическую обработку, была забракована.
Партия принималась в случае, если в выборке объема n=5 не было ни одной дефектной детали и браковалась в противном случае. Объем партии N=1000 шт.
Определить вероятность выполнения задания Р по параметрам качества продукции, если известно, что эта величина лежит в пределах
0,956 £ Р £ 1.
7.1. Из условия задачи задаемся априорной плотностью распределения величины Р:
7.2. Представляем искомую вероятность согласно выражению (2) в виде
где Рn(х) - вероятность приемки партии при фиксированном значении Р=х.
7.3. Подставляя в последнюю формулу выражение вероятности приемки Рn(х) для заданного плана контроля в случае N³nPn(x)=x5 будем иметь
.
Словарь-справочник терминов нормативно-технической документации. academic.ru. 2015.